Video for our SIGGRAPH Asia 11 paper. Research collaboration between University of Washington and Adobe.
In this paper, we train a computer to select still frames from video that work well as candid portraits. Because of the subjective nature of this task, we conduct a human subjects study to collect ratings of video frames across multiple videos. Then, we compute a number of features and train a model to predict the average rating of a video frame. We evaluate our model with cross-validation, and show that it is better able to select quality still frames than previous techniques, such as simply omitting frames that contain blinking or motion blur, or selecting only smiles. We also evaluate our technique qualitatively on videos that were not part of our validation set,and were taken outdoors and under different lighting conditions.