1. Detecting Dark Matter
    Douglas Finkbeiner, Harvard-Smithsonian Center for Astrophysics

    One of the most remarkable discoveries in all of astronomy and physics in the last century is the existence of "dark matter." Dark matter interacts with ordinary matter gravitationally, but other types of interactions are so tremendously weak they have never been detected, even by decades of ambitious experiments. Dark matter is not dark because it fails to reflect light (like a lump of coal) or is unilluminated for some reason (like an orphan planet coasting through interstellar space). Dark matter is a fundamentally different material than the protons, neutrons, and electrons that make up the visible Universe. Amazingly, there is 5 times as much dark matter in the Universe as ordinary matter. We are in the minority!

    I will explain three reasons we think dark matter exists, and discuss why alternatives (such as modified laws of gravity) cannot be the explanation. I will then introduce the Weakly Interacting Massive Particle (WIMP), our best candidate for dark matter. Even though WIMPs interact very weakly with ordinary matter and light, there are still ways to detect them. On rare occasion, WIMPs could scatter off of atomic nuclei in very sensitive detectors deep underground.
    Particle accelerators could produce WIMPs, or other new particles closely related to them. Finally astronomers observing high-energy gamma-rays and cosmic-rays may be able to detect the remains of certain kinds of WIMP interactions. All of these strategies are being vigorously pursued, and we hope to know much more about dark matter in coming years.

    For further reading:
    eclipse.net/~cmmiller/DM/

    # vimeo.com/33042864 Uploaded 207 Plays 1 Comment
  2. # vimeo.com/24353177 Uploaded 88 Plays 1 Comment
  3. Learn more about the project at solarsystem.nasa.gov/naititan/overview/

    Watch other videos in the series here:
    Titan as a Prebiotic Chemical System

    Dr. David Grinspoon, curator of astrobiology at the Denver Museum of Nature & Science gives a brief history of the discovery and science of Saturn’s moon Titan. Next David introduces the debate topic of whether or not Titan is geologically dead (like Mars) or is geologically alive (like Earth) and introduces the two debaters, Dr. Ralph Lorenz (Applied Physics Laboratory) and Dr. Jeff Moore (NASA Ames Research Center). Join us as Dr. Lorenz defends the evidence for an active interior, creating the surface features seen, and as Dr. Moore defends his case of a dead interior, with weathering processes creating the surface features seen on Titan.

    # vimeo.com/40176481 Uploaded 873 Plays 0 Comments

physics

adam bozanich

Browse This Channel

Shout Box

Heads up: the shoutbox will be retiring soon. It’s tired of working, and can’t wait to relax. You can still send a message to the channel owner, though!

Channels are a simple, beautiful way to showcase and watch videos. Browse more Channels.